Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2298246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178601

RESUMO

Probiotics are exploited for adjuvant treatment in IBS, but reliable guidance for selecting the appropriate probiotic to adopt for different forms of IBS is lacking. We aimed to identify markers for recognizing non-constipated (NC) IBS patients that may show significant clinical improvements upon treatment with the probiotic strain Lacticaseibacillus paracasei DG (LDG). To this purpose, we performed a post-hoc analysis of samples collected during a multicenter, double-blind, parallel-group, placebo-controlled trial in which NC-IBS patients were randomized to receive at least 24 billion CFU LDG or placebo capsules b.i.d. for 12 weeks. The primary clinical endpoint was the composite response based on improved abdominal pain and fecal type. The fecal microbiome and serum markers of intestinal (PV1 and zonulin), liver, and kidney functions were investigated. We found that responders (R) in the probiotic arm (25%) differed from non-responders (NR) based on the abundance of 18 bacterial taxa, including the families Coriobacteriaceae, Dorea spp. and Collinsella aerofaciens, which were overrepresented in R patients. These taxa also distinguished R (but not NR) patients from healthy controls. Probiotic intervention significantly reduced the abundance of these bacteria in R, but not in NR. Analogous results emerged for C. aerofaciens from the analysis of data from a previous trial on IBS with the same probiotic. Finally, C. aerofaciens was positively correlated with the plasmalemmal vesicle associated protein-1 (PV-1) and the markers of liver function. In conclusion, LDG is effective on NC-IBS patients with NC-IBS with a greater abundance of potential pathobionts. Among these, C. aerofaciens has emerged as a potential predictor of probiotic efficacy.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/microbiologia , Resultado do Tratamento , Constipação Intestinal , Probióticos/uso terapêutico , Eubacterium , Método Duplo-Cego , Diarreia/microbiologia
2.
Biomed Pharmacother ; 170: 115970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042116

RESUMO

The secretome, or conditioned medium (CM), from Mesenchymal Stem/stromal Cells (MSCs) has recently emerged as a promising cell-free therapeutic against osteoarthritis (OA), capable of promoting cartilage regeneration and immunoregulation. Priming MSCs with 10 ng/ml tumor necrosis factor α (TNFα) and/or 10 ng/ml interleukin 1ß (IL-1ß) aims at mimicking the pathological milieu of OA joints in order to target their secretion towards a pathology-tailored phenotype. Here we compare the composition of the CM obtained after 24 or 72 h from untreated and cytokine-treated adipose-derived MSCs (ASCs). The 72-hour double-primed CM presents a higher total protein yield, a larger number of extracellular vesicles, and a greater concentration of bioactive lipids, in particular sphingolipids, fatty acids, and eicosanoids. Moreover, the levels of several factors involved in immunomodulation and regeneration, such as TGF-ß1, PGE2, and CCL-2, are strongly upregulated. Additionally, the differential profiling of 80 bioactive molecules indicates that primed CM is enriched in immune cell chemotaxis and migration factors. Our results indicate that pre-conditioning ASCs with inflammatory cytokines can modulate the composition of their CM, promoting the release of factors with recognized anti-inflammatory, chondroprotective, and immunoregulatory properties.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Humanos , Citocinas/metabolismo , Secretoma , Osteoartrite/terapia , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Gut Microbes ; 15(2): 2274128, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37910479

RESUMO

The gut microbiota is believed to be a critical factor in the pathogenesis of IBS, and its metabolic byproducts, such as short-chain fatty acids (SCFAs), are known to influence gut function and host health. Despite this, the precise role of SCFAs in IBS remains a topic of debate. In this study, we examined the bacterial community structure by 16S rRNA gene profiling and SCFA levels by UPLC-MS/MS in fecal samples from healthy controls (HC; n = 100) and non-constipated patients (IBS-D and IBS-M; NC-IBS; n = 240) enrolled in 19 hospitals in Italy. Our findings suggest a significant difference between the fecal microbiomes of NC-IBS patients and HC subjects, with HC exhibiting higher intra-sample biodiversity. Furthermore, we were able to classify non-constipated patients into two distinct subgroups based on their fecal SCFA levels (fecal catabotype "high" and "low"), each characterized by unique taxonomic bacterial signatures. Our results suggest that the fecal catabotype with higher SCFA levels may represent a distinct clinical phenotype of IBS that could have implications for its diagnosis and treatment. This study provides a new perspective on the intricate relationship between the gut microbiome and bowel symptoms in IBS, underscoring the importance of personalized strategies for its management.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/microbiologia , Diarreia/microbiologia , RNA Ribossômico 16S/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/análise , Fezes/microbiologia
4.
Dis Model Mech ; 16(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37828911

RESUMO

Obesity is associated with various metabolic disorders, such as insulin resistance and adipose tissue inflammation (ATM), characterized by macrophage infiltration into adipose cells. This study presents a new Drosophila model to investigate the mechanisms underlying these obesity-related pathologies. We employed genetic manipulation to reduce ecdysone levels to prolong the larval stage. These animals are hyperphagic and exhibit features resembling obesity in mammals, including increased lipid storage, adipocyte hypertrophy and high circulating glucose levels. Moreover, we observed significant infiltration of immune cells (hemocytes) into the fat bodies, accompanied by insulin resistance. We found that attenuation of Eiger/TNFα signaling reduced ATM and improved insulin sensitivity. Furthermore, using metformin and the antioxidants anthocyanins, we ameliorated both phenotypes. Our data highlight evolutionarily conserved mechanisms allowing the development of Drosophila models for discovering therapeutic pathways in adipose tissue immune cell infiltration and insulin resistance. Our model can also provide a platform to perform genetic screens or test the efficacy of therapeutic interventions for diseases such as obesity, type 2 diabetes and non-alcoholic fatty liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Drosophila , Diabetes Mellitus Tipo 2/metabolismo , Antocianinas/metabolismo , Antocianinas/uso terapêutico , Obesidade/genética , Tecido Adiposo/metabolismo , Inflamação/complicações , Macrófagos/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Mamíferos
5.
bioRxiv ; 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461586

RESUMO

Obesity is a global health concern associated with various metabolic disorders including insulin resistance and adipose tissue inflammation characterized by adipose tissue macrophage (ATM) infiltration. In this study, we present a novel Drosophila model to investigate the mechanisms underlying ATM infiltration and its association with obesity-related pathologies. Furthermore, we demonstrate the therapeutic potential of attenuating Eiger/TNFα signaling to ameliorate insulin resistance and ATM. To study ATM infiltration and its consequences, we established a novel Drosophila model (OBL) that mimics key aspects of human adipose tissue and allows for investigating ATM infiltration and other related metabolic disorders in a controlled experimental system. We employed genetic manipulation to reduce ecdysone levels to prolong the larval stage. These animals are hyperphagic, and exhibit features resembling obesity in mammals, including increased lipid storage, adipocyte hypertrophy, and high levels of circulating glucose. Moreover, we observed a significant infiltration of immune cells (hemocytes) in the fat bodies accompanied by insulin resistance and systemic metabolic dysregulation. Furthermore, we found that attenuation of Eiger/TNFα signaling and using metformin and anti-oxidant bio-products like anthocyanins led to a reduction in ATM infiltration and improved insulin sensitivity. Our data suggest that the key mechanisms that trigger immune cell infiltration into adipose tissue are evolutionarily conserved and may provide the opportunity to develop Drosophila models to better understand pathways critical for immune cell recruitment into adipose tissue, in relation to the development of insulin resistance in metabolic diseases such as obesity and type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We believe that our OBL model can also be a valuable tool and provide a platform either to perform genetic screens or to test the efficacy and safety of novel therapeutic interventions for these diseases.

6.
Front Genet ; 10: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881374

RESUMO

Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.

7.
Biomed Res Int ; 2018: 6413172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721509

RESUMO

Epidemiological and preclinical studies have demonstrated that bioactive foods like flavonoids, polyphenolic compounds derived from fruits and vegetables, exert a protective action against obesity, cardiovascular disorders, and Adipocyte Tissue Macrophage infiltration (ATM). All these pathologies are characterized by increase in reactive oxygen species (ROS) and in proinflammatory cytokines that have been shown to favor the migration of immune cells, particularly of macrophages, in metabolically active organs like the liver and adipose tissue, that in Drosophila are constituted by a unique organ: the fat body. This study, using a unique Drosophila model that mimics human ATM, reveals the beneficial effects of flavonoids to reduce tissue inflammation. Our data show that anthocyanin-rich food reduces the number of hemocytes, Drosophila macrophages, infiltrating the fat cells, a process that is associated with reduced production of ROS and reduced activation of the JNK/SAPK p46 stress kinase, suggesting a fundamental function for anthocyanins as antioxidants in chronic inflammation and in metabolic diseases.


Assuntos
Tecido Adiposo/metabolismo , Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Corpo Adiposo/metabolismo , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Drosophila melanogaster , Hemócitos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...